Problems

1-1. What are the dimensions of: pressure p; velocity V; acceleration a; specific weight γ; and mass density ρ? for both L-T-F & L-T-M.

1-2. Verify that each of the following terms is dimensionally equivalent to length: velocity head $V^2/2g$, and pressure head p/γ .

1-3. Determine the physical dimensions of C in the Chezy equation V = $C\sqrt{RS}$, where, V is velocity, R is hydraulic radius and has the dimension L, and

1-8. Calculate the physical dimensions of the following combinations of terms: the Reynolds number Re = VD/v; the Froude number Fr = V/\sqrt{gy} ; and the Mach number, Ma = $V/\sqrt{E/\rho}$.

S is slope which is a ratio of lengths.

the Reynolds number Re =
$$VD/v$$
; the Froude number Fr = V/\sqrt{gy} ; and to Mach number, Ma = $V/\sqrt{E/\rho}$.

1-11. Assuming C, f, and S are dimensionless terms, which of the following equations are not dimensionally homogeneous: (a) F = Ma; (b) $V = C\sqrt{RS}$; (c) $h_f = f \frac{L}{D} \frac{V^2}{2g}$; and (d) $\frac{V_1^2}{2g} + \frac{p_1}{\gamma} + z_1 = \frac{V_2^2}{2g} + \frac{p_2}{\gamma} + z_2$.